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Structure:
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• DSGE models are nonlinear systems of equations which, when 
loglinearized around the steady state, can be represented by a 
system of linear expectational difference equations (Iskrev 2010; 
Kociecki and Kolasa 2018). 

• We focus on DSGE models, for which the minimal state-space 
solution of the system of expectational difference equations 
exists (Komunjer and Ng 2011); this is the case for most of the 
DSGE models (Morris 2014). 

• The minimal state-space solution has a Gaussian ABCD 
representation (Fernandez-Villaverde et al. 2007; Komunjer and 
Ng 2011), which is a commonly used representation of DSGE 
models in the literature (Giacomini 2013).
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• Score-driven models:

• Harvey and Chakravarty (2008); Creal, Koopman, and Lucas (2008)

• Until now, more that 200 publications in academic journals on 
score-driven models. One of the most important advances in time 
series econometrics of the last decade. 

• Advantages of score-driven models:

• Generalizations of many classical time series models (for example, 
ARMA, GARCH, VAR).

• From an information-theoretic point of view, optimal updating 
mechanism.

• Robustness to outliers and missing observations in the time 
series.
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1) Gaussian ABCD representation

• where ��~���0��	, Σ� has a multivariate normal 
distribution with variance-covariance matrix Σ. 

• Estimated by using the maximum likelihood (ML) method. 
Impulse response functions are available, since the model 
has a Gaussian-VARMA(1,1) representation.
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2) Score-driven homoscedastic ABCD representation

• where ��~
��0��	, ΩΩ′, ν� has a multivariate t-distribution 
with scale matrix ΩΩ′, and degrees of freedom ν � 2.

• Hence, ��~
� 0��	, � Θ ΩΩ�� Θ �, ν ≡ 
� 0��	, Σ, ν

•�� (score function) replaces �� in the transition equation. 
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2) Score-driven homoscedastic ABCD representation

• Score function:

• The conditional mean E �� �	, … , ���	 �  �Θ�!��	.

• Score function "� is defined as follows:

•"� is i.i.d. with zero mean vector and a well-defined 
variance-covariance matrix.
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2) Score-driven homoscedastic ABCD representation

• The Gaussian ABCD representation is a special case of the 
score-driven homoscedastic ABCD representation, because 

"� →$ �� as ν → ∞. 

• The score-driven homoscedastic ABCD representation is
estimated by using the maximum likelihood (ML) method. 

• Impulse response functions are reported in the paper.
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3) Score-driven heteroscedastic ABCD representation

• where ��~
��0��	, Ω�Ω�
� , ν�. Hence, 

��~
� 0��	, � Θ Ω�Ω�
�� Θ �, ν ≡ 
� 0��	, Σ� , ν

• Estimated by using the maximum likelihood (ML) method. 
Impulse response functions are reported in the paper.
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3) Score-driven heteroscedastic ABCD representation

• Score function:

• In order to define the score function, in the equation:

•Σ is replaced by Σ�.

• For the model of Σ�, we use a score-driven specification of 
Ω�Ω�

� (we show this for a specific DSGE model in the 
following). 
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“AS model”
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The variables in the AS model are defined as follows:

• &� is the difference between current output and steady state output.

• '� is the difference between current inflation and steady state 
inflation.

• (� is the difference between current interest rate and steady state 
interest rate.

• )� is the difference between current government spending and 
steady state government spending.

• *� is the error term in ln -� � . + ln-��	 + *�, where -� is 
aggregate productivity. 

• 0� is the difference between current consumption and steady state 
consumption.
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1) Gaussian ABCD representation (measurment & transition equations)
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2) Score-driven homoscedastic ABCD representation
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3) Score-driven heteroscedastic ABCD representation (the same form)

SIEG 2020 - Jan 21, 2021 - Banco de Guatemala 17



3) Score-driven heteroscedastic ABCD representation
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3) Score-driven heteroscedastic ABCD representation
The partial derivatives of the log densities of *�, )�, and (�, which are 

univariate Student’s t-distributions, with respect to 12,�, 13,�, and 14,�
are the score functions with respect to log-scale, and are given by: 
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This is a Beta-t-EGARCH type specification (Harvey and Charkravarty

2008). We also refer to: Angelini and Gorgi (2018).
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Data

• Data for the following variables are from Federal Reserve 
Economic Data (FRED) for the period of 1954 Q3 to 2019 Q4:

• (a) not seasonally adjusted effective federal funds rate → (�
• (b) seasonally adjusted US GDP level → &�
• (c) seasonally adjusted US CPI for all urban consumers → '�
• The observation period is the maximum period for which 

data are available from FRED for these variables.

• Steady states are estimated by using sample averages.
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ResultsResultsResultsResults
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Likelihood-based statistical performance

Statistics of covariance stationarity and invertibility
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Heteroscedasticity
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Heteroscedasticity
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Heteroscedasticity
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IRFs for Gaussian ABCD

27

Cholesky matrix-based 

identification (exclusion 

restrictions-based 

identification) 



IRFs for score-driven 

homoscedastic ABCD
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Cholesky matrix-based 

identification (exclusion 

restrictions-based 

identification) 



IRFs for score-driven 

heteroscedastic ABCD

More precise IRFs than 

for the other models.
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Cholesky matrix-based 

identification (exclusion 

restrictions-based 

identification) 
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sblazsek@ufm.edu
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